
J Glob Optim (2008) 41:427–445
DOI 10.1007/s10898-007-9255-9

Self-adaptive velocity particle swarm optimization
for solving constrained optimization problems

Haiyan Lu · Weiqi Chen

Received: 11 June 2006 / Accepted: 8 October 2007 / Published online: 31 October 2007
© Springer Science+Business Media, LLC. 2007

Abstract Particle swarm optimization (PSO) is originally developed as an unconstrained
optimization technique, therefore lacks an explicit mechanism for handling constraints. When
solving constrained optimization problems (COPs) with PSO, the existing research mainly
focuses on how to handle constraints, and the impact of constraints on the inherent search
mechanism of PSO has been scarcely explored. Motivated by this fact, in this paper we
mainly investigate how to utilize the impact of constraints (or the knowledge about the feasi-
ble region) to improve the optimization ability of the particles. Based on these investigations,
we present a modified PSO, called self-adaptive velocity particle swarm optimization (SAV-
PSO), for solving COPs. To handle constraints, in SAVPSO we adopt our recently proposed
dynamic-objective constraint-handling method (DOCHM), which is essentially a constituent
part of the inherent search mechanism of the integrated SAVPSO, i.e., DOCHM + SAVPSO.
The performance of the integrated SAVPSO is tested on a well-known benchmark suite and
the experimental results show that appropriately utilizing the knowledge about the feasible
region can substantially improve the performance of the underlying algorithm in solving
COPs.

Keywords Constrained optimization · Particle swarm optimization · Stochastic
optimization · Evolutionary algorithms · Nonlinear programming · Constraint-handling
mechanism

H. Lu (B)
School of Science, Jiangnan University, Wuxi 214122, P.R. China
e-mail: kangting88@hotmail.com

H. Lu
Department of Mathematics, Zhejiang University, Hangzhou 310027, P.R. China

W. Chen
School of Information Technology, Jiangnan University, Wuxi 214122, P.R. China

W. Chen
China Ship Scientific Research Center, Wuxi 214082, P.R. China

123

428 J Glob Optim (2008) 41:427–445

1 Introduction

Many real-world applications, such as engineering design, VLSI design, structural optimiza-
tion, economics, location and allocation problems [1], involve difficult constrained optimi-
zation problems (COPs) that must be solved efficiently and effectively. Due to the complex
nature of many of these problems, deterministic optimization approaches such as Feasible
Direction and Generalized Gradient Descent are often unable to provide even a feasible solu-
tion, since these approaches make strong assumptions on the continuity and differentiability
of the objective function [1,2]. This has provided an opportunity for evolutionary algorithms
such as Genetic Algorithm, Evolutionary Strategies, Evolutionary Programming and Particle
swarm optimization (PSO), which have been successfully applied for tackling COPs during
the past few years [3–7].

PSO is population-based, global, and stochastic optimization algorithm developed by
Kennedy and Eberhart in 1995 [8,9]. It has gaining an increasing popularity due to its
simplicity and effectiveness in performing difficult optimization tasks. However, like other
aforementioned stochastic algorithms, PSO lacks an explicit constraint-handling mecha-
nism. A number of constraint-handling mechanisms have been proposed for evolutionary
algorithms [3,10]. In recent years, several studies have been devoted to incorporated some
constraint-handling mechanisms into PSO algorithm for solving COPs [4,6,11–14]. None-
theless, most of these studies are focused on the methods for “handling constraints” of COPs,
little attention has been paid on investigating the influence of constraints on the particles’
flying modes. Motivated by this fact, in this work we not only incorporate appropriate
constraint-handling technique into the algorithm proposed, but also investigate how to
improve its inherent algorithmic mechanism under the influence of constraints.

PSO emulates the flying pattern (or search mechanism) of particles in search space with-
out constraints (except the bound constraints), hence it is not directly applicable to COPs.
Since PSO does not take into accounts the impact of constraints on the search mechanism, it
is usually difficult to concentrate the particle in the approximate region of the feasible region
(especially when the feasible region is very small), impairing the optimization ability of the
algorithm. Therefore, we imagine that if we could appropriately incorporate the impact of
constraints into the search mechanism of PSO algorithm, then the optimization ability of PSO
would be improved. For this, in this paper we primarily investigate the potential impact of
constraints on the flying pattern (or the search mechanism) of particles, explore the methods
for incorporating this impact into the inherent algorithmic mechanism of PSO, and thereby
propose a simple incorporation strategy, which we refer to as self-adaptive velocity particle
swarm optimization (SAVPSO). This name is derived from the property that in our proposed
algorithm, each particle has the ability to self-adaptively adjust its velocity according to some
characteristics of feasible region.

In addition, to deal with constraints directly, some proper constraint-handling mechanism
is necessary when applying SAVPSO to COPs. As aforementioned, there have been sev-
eral methods for handling constraints with PSO. One commonly used and straightforward
approach is via penalty function, which converts the COP into a unconstrained optimization
problem [15]. This method may work quite well for some problems, but it requires a careful
tuning of the penalty parameters, and which turns out to be a difficult optimization problem
itself [16]. Another constraint-handling method with PSO is preserving feasible solutions,
which was adapted from [17] by Hu and Eberhart [12]. This method requires an initialization
of particles inside the feasible region, which may need a long time initialization process and
may be hard to achieve for some problems. Recently, some researchers have proposed some
hybrid PSO algorithms combined with some constraint-handling mechanisms [13,18]. In

123

J Glob Optim (2008) 41:427–445 429

this paper, we adopt our recently proposed dynamic-objective constraint-handling method
(DOCHM) to handle constraints [19]. DOCHM operates on the inherent search mechanism
of SAVPSO and reflects in some aspect the impact of the constraints. The main aim of
DOCHM is to compel the particles to search for the feasible region, and this is accomplished
by minimizing a distance function which is treated as the first objective to be optimized, and
optimizing the original objective (of the original problem) which is treated as the second
objective of DOCHM.

The rest of this paper is organized as follows. Section 2 introduces the problem of interest
to us. Section 3 describes the standard PSO and analyze the the aspects of its inapplicabil-
ity to COPs. In Sect. 4, we present our proposed SAVPSO, including a brief description of
DOCHM. In Sect. 5, experiments were performed on 13 well-known benchmark functions to
evaluate the performance of our proposed SAVPSO, and a comparison of results with respect
to some other algorithms are provided. Finally, our conclusion and future work are given in
Sect. 6.

2 Problem statement

The constrained optimization problems (COPs) or the general nonlinear programming prob-
lems (NLPs) can be formulated as follows:

minimize f (x) (1)

subject to

gi (x) ≤ 0, i = 1, . . . , q (2)

h j (x) = 0, j = q + 1, . . . , m (3)

where x = (x1, x2, . . . , xn) is the vector of solutions such that x ∈ S ⊆ Rn , q is the number
of inequality constraints. The search space S is defined as an n-dimensional space bounded
by parametric constraints

xl
d ≤ xd ≤ xu

d , d = 1, . . . , n (4)

and the feasible region F ⊆ S is the region of S for which the inequality and equality con-
straints are satisfied. For an inequality constraint that satisfies gi (x) = 0, then we will say
that is active at x . All equality constraints h j (regardless of the values of x used) are said to be
active at all points of F . As a common practice in the specialized literature on evolutionary
algorithms, equality constraints are transformed into inequalities of the form

|h j (x)| − δ ≤ 0, for j = q + 1, . . . , m (5)

where δ is the tolerance allowed (a very small positive value). A solution x is regarded as
feasible if gi (x) ≤ 0, for i = 1, . . . , q and |h(x)| − δ ≤ 0, for j = q + 1, . . . , m.

3 PSO and its inapplicability to COPs

Since its introduction in 1995 [8,9], the PSO algorithm has experienced many changes, sev-
eral of which have turned out to cause genuine improvements in performance [20]. In this
section, we take the following typical variant of PSO as an example, which we refer to as the
standard PSO (SPSO for short), to analyze the aspects of inapplicability of SPSO algorithms
to COPs.

123

430 J Glob Optim (2008) 41:427–445

In a n-dimensional search space, S ⊆ Rn , assume that the swarm consists of N particles.
The i-th particle is in effect an n-dimensional vector xi = (xi1, xi2, . . . , xin) ∈ S. The veloc-
ity of this particle is also a n-dimensional vector vi = (vi1, vi2, . . . , vin) ∈ S. The best pre-
vious position visited by the i-th particle is a point in S, denoted as pi = (pi1, pi2, . . . , pin).
Let g be the index of the particle that attained the best previous position among the entire
swarm, and t be the iteration counter. Then in SPSO, the swarm is manipulated according to
the following update equations [21–23]:

vid(t + 1) = ωvid(t)+ c1r1(pid(t)− xid(t))+ c2r2(pgd(t)− xid(t)) (6)

xid(t + 1) = xid(t)+ vid(t + 1) (7)

where i = 1, 2, . . . , N is the particle’s index, d = 1, 2, . . . , n indicates the particle’s
d-th component, ω is a parameter called the inertia weight, c1 and c2 are positive con-
stants referred to as cognitive and social parameters, respectively, and r1 and r2 are random
numbers uniformly distributed in [0, 1], denoted as r1, r2 ∈ U [0, 1].

Consider the d-th dimension of the search space, d = 1, 2, . . . , n. The right-hand-side
of (6) consists of three parts [24]. The first part ωvid(t) is the momentum part. The second
part is the “cognitive” part which represents personal thinking of itself—learning from its
own flying experience. The third part is the “social” part which represents the collaboration
among particles—learning from group flying experience. In fact, the sum of the last two
parts, i.e., c1r1(pid(t)− xid(t))+ c2r2(pgd(t)− xid(t)), can be considered as, for the time
being, the newly gained velocity term towards a potential position p′ in the promising region
around pgd(t) and pid(t). While the first part ωvid(t) can be viewed as the credibility on
the previous velocity of the particle, or the modification term on the newly gained velocity,
which would impel the particle to deviate the potential position p′. Consequently, summing
these two terms results in the current velocity vid(t + 1). However, these two terms do not
take into account the influence of the feasible region. For example, each or both of these
two components might be so large that the corresponding particle would leave far away from
the feasible region. This poses one of the great difficulties of PSO in solving COPs. There-
fore, we expect that if the impact of constraints could be appropriately exploited, then the
optimization ability of the algorithm might be substantially improved.

4 Our approach

In this section, we present in detail our approach to incorporating the impact of constraints
into the inherent search mechanism of PSO.

4.1 Impact of constraints on the search mechanism of PSO

Recall that in Sect. 3, we divide the velocity expression (6) into two terms and explain the
implicit meaning of them respectively. Our discussion shows that the search mechanism
of PSO takes no account of the impact of constraints or the knowledge about the feasible
region. In this paper we will investigate how to incorporate this impact or utilize this kind
of knowledge appropriately so as to improve the performance of the resulting algorithm for
solving COPs. For this reason, we first analyze the knowledge (about the feasible region)
that might have impact upon the search behavior of the particles. We conjecture that the
following three characteristics of the feasible region, which can be considered as some kind
of knowledge about the feasible region, are responsible for the impact on the search behavior
of the particles:

123

J Glob Optim (2008) 41:427–445 431

(1) The position of the feasible region with respect to the search space;
(2) The connectivity and the shape of the feasible region;
(3) The ratio |F |/|S| of feasible region to the search space.

Characteristic (1) implies that the particles should first of all search for the feasible region
so as to find the optimal solution within the feasible region. Therefore, the feasible region can
be viewed as the objective of the particle lying outside the feasible region. In our algorithm
discussed later, this kind of impact is reflected and realized by DOCHM (see Sect. 4.4), a
constraint-handling method recently proposed by us in [19].

Characteristic (2) suggests that the particles should have relatively strong exploration abil-
ity so as to improve their ability to jump out of the local optimum. As we will see later in
Sects. 4.2, 4.3 and 5, we may achieve this goal by selecting appropriate values of parameters.

The ratio |F |/|S| described in characteristics (3) reflects the relative size of the feasible
region. We conjecture that if we can effectively utilize this kind of knowledge in our algo-
rithm to appropriately modify the velocity of each particle, then the optimization ability of
our algorithm might be improved.

4.2 Self-adaptive velocity particle swarm optimization

Based on the analysis above, we modify the update equation of velocity in the following
way. In (6), we set c1 = c2 = 1 and r1 = 1 − r2, thus the newly gained velocity term
would cause particle i to fly toward a position between pgd and pid . Therefore, particle
i will not hurtle too far away from the feasible region. At the same time, we replace the
modification term ωvt

id by ω|pi ′d(t)− pid(t)|sign(vid(t)), where sign(vid(t)) represents the
sign of vid(t), which indicates the flying direction of vi (t) in the d-th dimension. In other
words, the previous experience in velocity of particle i is only restricted to the flying direc-
tion, while the magnitude of it is determined by ω|pi ′d(t) − pid(t)| according to the effect
of feasible region, where ω is a parameter, and i ′ is a uniform random integer in the range
[1, N], denoted as i ′ ∈ intU [1, N]. Note that from the above assumption, both pid and pi ′d
are close to or within the feasible region, thus |pi ′d(t)− pid(t)| roughly reflects the size of
the feasible region. Therefore, with ω|pi ′d(t) − pid(t)|, particle i will not deviate too far
from the feasible region; moreover, the value of |pi ′d(t) − pid(t)| can self-adaptively vary
with the changes of the search scope of the swarm.

According to the discussion above, we derive our improved PSO algorithm, which we refer
to as self-adaptive velocity PSO (SAVPSO for short). In SAVPSO, the swarm is manipulated
according to the following update equations:

vid(t + 1) = ω|pi ′d(t)− pid(t)|sign(vid(t))

+r(pid(t)− xid(t))+ (1− r)(pgd(t)− xid(t)) (8)

xid(t + 1) = xid(t)+ vid(t + 1) (9)

where r ∈ U [0, 1], i ′ ∈ intU [1, N], ω is a scaling parameter, and sign(vid(t)) is the sign of
vid(t).

4.3 Parameter analysis

In this subsection, we make an intuitive analysis of the parameter ω or c.
Comparing (6) with (8), we see that in the right hand of (8), the term r(pid(t)− xid(t))+

(1− r)(pgd(t)− xid(t)) is designed such that the particle can focus its search in the approx-
imate region between pi and pg , while the term ω|pi ′d(t)− pid(t)|sign(vid(t)) is designed

123

432 J Glob Optim (2008) 41:427–445

such that the corresponding velocity reflects the impact of constraints or utilizes the knowl-
edge about the feasible region. Note that at certain stage in the search process, under the
impact of DOCHM, the best positions of the particles will lie within and/or around the fea-
sible region, then |pi ′d(t)− pid(t)| may roughly reflect the size of the feasible region from
a point-of-view of statistics, and ω is a scaling parameter. Therefore, if we take ω = 1,
then speed ω|pi ′d(t) − pid(t)| roughly matches the size of the feasible region. If we take
ω > 1, then speed ω|pi ′d(t) − pid(t)| is expanded and thus the search scope of the swarm
is enlarged, hence the exploration ability of the swarm is improved, but the convergence
speed is lowered. If we take ω < 1, then speed ω|pi ′d(t) − pid(t)| is reduced and thus the
search scope of the swarm shrinks, the exploitation ability of the swarm is improved, and the
algorithm converges fast but is prone to get trapped into local optimum.

To obtain the global optimum, the particles need not only strong exploration ability to
jump out of the local optimum, but also good exploitation ability so as to pinpoint the global
optimum within the feasible region. Therefore, according to the above analysis of the meaning
of ω, we think that it is reasonable to strike a balance between exploitation and exploration
ability of SAVPSO. To do so, we may simply take ω = 1. Or alternatively, we may set
ω = cr3, where c is a parameter and r3 ∈ U [0, 1]. Note that if c = 2, then ω = 2r3, and the
mean value of ω is 1. If c < 2, then the mean value of ω < 1.

As we will see Sect. 5, our algorithm with c = 2 can achieve substantially good results
for those problems with relatively large value of |F |/|S|. However, this is not the case for
the problems with relatively small |F |/|S|. Therefore, according to the analysis of parameter
ω, we propose that if we take a smaller value of c, say c = 1, then the performance of our
algorithm would be improved for the problems with relatively small value of |F |/|S|. In fact,
additional experimental results (see Table 4 in Sect. 5) indicate that c = 1 (in this case the
mean value of ω = 1/2 < 1) indeed improves the performance of our algorithm for these
problems, which is consistent with our parameter analysis.

4.4 Constraint-handling method

DOCHM is a PSO-based constraint-handling technique recently proposed by us in [19].
Through defining a distance function �(x), DOCHM converts the original problem into a
bi-objective optimization problem min(�(x), f (x)), where �(x) is treated as the first objec-
tive and f (x) the second one. There are several ways to construct the distance function �(x)

with respect to the feasible region, one simple way is as follows:

�(x) =
q∑

i=1

max{0, gi (x)} +
m∑

j=q+1

max{0, |h j (x)| − δ} (10)

Clearly, �(x) is the sum of constraint violations, �(x) ≥ 0, and thus �(x) = 0 for ∀ x ∈ F .
Moreover, all the optimal solutions of �(x) constitute the feasible region F of the original
problem. Clearly, flying the particles towards the feasible region is equivalent to optimizing
�(x), and thus the aforementioned characteristic (1) can be reflected by DOCHM.

It is worth noting that although �(x) takes on a form of penalty function, it is not used as
it is defined in the conventional penalty function method. �(x) is merely used to determine
wether or not a particle is within the feasible region and how close a particle is to the feasible
region. It can be seen from (10) that no additional parameter is involved in DOCHM. To
be specific, the dynamic-objective constraint-handling method works in the following way.
The auxiliary objective function �(x) and the real objective function f (x) constitute the
two functions to be optimized. If a particle lies outside the feasible region, the particle will

123

J Glob Optim (2008) 41:427–445 433

Table 1 Pseudocode of DOCHM

Procedure for calculating pi and pg

set �ibest = �(pi), fibest = f (pi), �i = �(xk
i)

If �i < �ibest Then pi ← xk
i , �ibest ← �i End

If �i = 0 and �ibest = 0 Then

fi = f (xk
i)

If fi ≤ fibest Then pi ← xk
i , fibest ← fi

End

End

set �gbest = �(pg), fgbest = f (pg)

If �i < �gbest Then pg ← xk
i , �gbest ← �i End

If �i = 0 and �gbest = 0 Then

If fi ≤ fgbest Then pg ← xk
i , fgbest ← fi

End

take �(x) as its optimization objective. Otherwise, the particle will instead optimize the real
objective function f (x). During the optimization process, if a particle leaves the feasible
region, then it will once again optimize �(x). Therefore, the particle have the ability to
dynamically adjust their optimization objectives independently of one another. Additionally,
although the main aim of DOCHM is to drive the particles into the feasible region, it do not
strictly confine the particles within the feasible region. This is advantageous to improving
the particles’ exploration ability. The procedure of DOCHM is described in Table 1.

DOCHM is a generic constraint-handling technique in the sense that it can be incorporated
into various kinds of PSO-based algorithms. DOCHM mainly focus on efficiently reflecting
the impact of characteristic (1) of the feasible region on the flying pattern of the particles,
whereas SAVPSO aims at improving the optimization behavior within the feasible region.
This can be seen from the experiments in Sect. 5.

4.5 The integrated SAVPSO for solving COPs

In some cases, the boundaries of the feasible region may locate very close to the parametric
boundaries xl

d and/or xu
d of the search space. Therefore, during the solution process, it would

be likely to occur that some particles near the boundaries of the feasible region violate the
parametric constraints. In order to overcome this problem, we adopt the technique that we
have used in [19], to randomly re-evaluate xid(t) such that xid(t) falls between the mean
value x̄d(t) of the d-th components of all particles and the parametric bounds on dimension
d , that is

xid(t) =
{

x̄d(t)+ ar4(xl
d − x̄d(t)), if xid(t) < xl

d
x̄d(t)+ ar4(xu

d − x̄d(t)), if xid(t) > xu
d

(11)

where x̄d(t) =
(∑N

i=1 xid(t)
)

/N , r4 ∈ U [0, 1], and a is a constant number in the range

[0, 1]. To make this technique applicable to general problems, we set a = 1 in the experiments
conducted in this paper.

123

434 J Glob Optim (2008) 41:427–445

Table 2 Pseudocode of the Integrated SAVPSO

create and initialize an n-dimensional swarm

For k = 0 to Imax

x̄d (t) =
(∑N

i=1 xid (t)
)

/N , d = 1, 2, . . . , n

For i = 1 to N

For d = 1 to n

xid (t + 1) = xid (t)+ vid (t + 1)

vid (t + 1) = ω|pi ′d (t)− pid (t)|sign(vid (t)+ r(pid (t)− xid (t))+
(1− r)(pgd (t)− xid (t))

If xid (t + 1) > xu
d Then xid (t + 1) = x̄d + ar4(xu

d − x̄d)

End

If xid (t + 1) < xl
d Then xid (t + 1) = x̄d + ar4(xl

d − x̄d)

End

End

Call Procedure for Calculating pi (t + 1) and pg(t + 1)

End

End

In summary, Table 2 describes the pseudo-code of our integrated SAVPSO algorithm,
where Imax is the maximum number of iterations. Note that the integrated SAVPSO incor-
porates DOCHM as a component of its search mechanism.

5 Experiments and discussions

To evaluate the performance of the proposed algorithm, we conducted a series of experiments
on the well known Michalewicz’ benchmark functions [10] extended by Runarsson and Yao
[16]. These test functions selected include characteristics that are representative of what
can be considered “difficult” global optimization problems for an evolutionary algorithm.
Moreover, we compared our results with respect to some most recently proposed PSO-based
algorithms enhanced with some additional operators and constraint-handling mechanisms
[4,12,13,18,25].

The main characteristics of these benchmark functions are summarized in Table 3, for
detailed function information see Appendix at the end of this paper. In Table 3, each value in
the third column indicated by |F |/|S| is an estimate of the ratio between the feasible region
and the entire of search space, where |F | is the number of feasible solutions and |S| is the
total number of solutions randomly generated. In this work, |S| =1,000,000.

Problems g02, g03, g08, and g12 are maximization problems. They were converted
into minimization problems using− f (x). All equality constraints h j (x) = 0 have been trans-
formed into inequality constraints |h j (x)| − δ ≤ 0, using the degree of violation δ = 0.001.
A total of 50 particles were employed, the maximum number of iterations Imax were set to
1000 per run, and 30 independent runs of our algorithm were executed for each problem.
The parameter c in Table 3 is the constant in the dynamic selection strategy ω = cr3 for
the parameter ω in Eq. 8. The value of c is selected according to the method discussed in

123

J Glob Optim (2008) 41:427–445 435

Table 3 Main characteristics of the benchmark functions

Problem n Function |F |/|S|(%) c LI NI LE NE Active

g01 13 quadratic 0.0003 2 9 0 0 0 6

g02 20 nonlinear 99.9973 2 1 1 0 0 1

g03 10 polynomial 0.0026 1 0 0 0 1 1

g04 5 quadratic 27.0079 2 0 6 0 0 2

g05 4 cubic 0.0000 1 2 0 0 3 3

g06 2 cubic 0.0057 1 0 2 0 0 2

g07 10 quadratic 0.0000 2 3 5 0 0 6

g08 2 nonlinear 0.8581 2 0 2 0 0 0

g09 7 polynomial 0.5199 2 0 4 0 0 2

g10 8 linear 0.0020 2 3 3 0 0 3

g11 2 quadratic 0.0973 2 0 0 0 1 1

g12 3 quadratic 4.7697 2 0 93 0 0 0

g13 5 exponential 0.0000 1 0 0 0 3 3

LI: linear inequality, NI: nonlinear inequalities, LE: linear equalities, NE: nonlinear equality, active: the number
of active constraints at optimum

Sect. 4, with g01 and g07 being two exceptions. Since these two functions tends to trap the
algorithm into local minima, we set c = 2. All experiments were performed in MATLAB.

Table 4 summarizes the experimental results obtained using our SAVPSO algorithm with
the above experimental settings, where “Opt” represents the known “optimal” solution for
each problem, “Std” stands for “standard deviation” of the obtained statistics for the 30
independent runs. It should be pointed out that the obtained solutions are all feasible solu-
tions, this in fact is guaranteed by the inherent search mechanism of our algorithm. It can be
seen from Table 4 that SAVPSO algorithm generates considerably accurate solutions for most
of the problems and the standard deviations are quite small. Note that all equality constraints
have been converted into inequality constraints using a degree of violation δ = 0.001. Due
to this approximation, some solutions might be better than the known optimal solutions. For
example, the best objective value of g05 given by SAVPSO is 5126.484153, which is better
than the optimum 5126.4981. Other examples include problems g03, g11 and g13.

Problem g01 has two local minima−13.000 and−12.453125, only 3 out of 30 indepen-
dent runs were trapped into the two local minima. Problems g05, g10 and g13 are among
those difficult-to-solve problems for evolutionary algorithms. Specifically, g10 is a difficult
problem for penalty function approach, while g05 and g13 involves equality constraints.

The above experiment have shown that our algorithm can achieve substantially good
results for those problems with relatively large value of |F |/|S|. But this is not the case for
the problems with relatively small |F |/|S| (e.g. g03, g05 and g13). Therefore, according
to the previous analysis of parameter ω, we conducted additional experiment on these prob-
lems with c = 1 (thus the mean value of ω is equal to 1/2), and the corresponding results
are listed in Table 4. It can be seen from Table 4, this parameter setting indeed improves
the performance of our algorithm for these problems, which is consistent with our previous
parameter analysis.

Note from Table 3 that the size of feasible region of problems g05 and g13 is extremely
small (practically zero), this will deteriorate the performance of the PSO-based algorithms.

123

436 J Glob Optim (2008) 41:427–445

Table 4 Experimental results on 13 benchmark functions using SAVPSO with Imax = 1000; 30 Independent
runs were carried out; the row indicated by * lists the corresponding results with ω = 1

Pro c Opt Best Median Mean Worst Std

g01 2 −15 −15 −15 −14.7151 −12.4531 0.74

g02 2 −0.803619 −0.803443 −0.747502 −0.740577 −0.631598 0.042

g03 2 −1 −0.7706 −0.4534 −0.4964 −0.2413 0.14

1 −1.0048 −1.0038 −1.0034 −0.9976 0.0017

g04 2 −30665.539 −30665.539 −30665.539 −30665.539 −30665.539 0

g05 2 5126.4981 5130.1575 5589.1126 5562.4528 6111.5135 324.42

1 5126.4886 5224.6825 5363.5092 6051.1367 296.08

* 5126.4841 5126.4842 5202.3627 5520.1467 112.97

g06 2 −6961.81388 −6961.81388 −6961.81388 −6961.81388 −6961.81387 0.0000013

1 −6961.81388 −6961.81388 −6961.81388 −6961.81388 0

g07 2 24.306 24.319 24.887 24.989 26.194 0.55

g08 2 −0.095825 −0.095825 −0.095825 −0.095825 −0.095825 0

g09 2 680.630 680.632 680.653 680.655 680.699 0.018

g10 2 7049.3307 7087.9553 7400.7132 7439.7345 8165.1973 246.67

* 7054.1256 7174.8991 7173.2661 7335.2477 84.53

g11 2 0.75 0.749000 0.749000 0.749002 0.749021 0.0000039

g12 2 −1 −1 −1 −1 −1 0

g13 2 0.0539498 0.3092 0.7722 1.0639 10.1580 1.72

1 0.300316 0.851943 1.542039 19.486249 3.43

* 0.0538666 0.461471 0.552753 1.856102 0.42

To overcome this difficulty, we carried out additional experiments with ω = 1 and other
experimental settings remaining unchanged, generating significantly better results, which
are included in the rows indicated by symbol * in Table 4. The results suggests that if the
feasible region is very small, then a search mechanism with a constant value of ω may per-
form better that with a random value of ω. This is because randomized ω imposes so much
randomness to the movement of particles that it is difficult to focus the search on the feasible
region, thus impairing the optimization ability of the algorithm used.

Our comparison results gainst the aforementioned PSO-based algorithms is presented in
Tables 5 and 6.

As is shown in Table 5, in comparison with Toscano and Coello’s algorithm [13], denoted
CHMPSO in the rest of this paper, our results are much better for all but two problems (g01
and g02) in terms of best, mean, and worst results. Even in the two exceptions, our algorithm
found optimal solution of one problem (g01) and “better” best result for the other problem
(g02) than that obtained by CHMPSO. Regarding the computational cost measured in the
number of fitness (or objective) function evaluations (FFE), we have used a maximum of
only 50× 1000 = 50, 000 FFE for each problem, while 40× 8500 =340,000 (40 particles
runing for 8500 iterations) FFE were performed in CHMPSO.

For problemsg04, g08, g11, g12 and eveng06, our algorithm has consistently found
the optimal solution for all 30 runs, whereas CHMPSO did not find any for problems g04
and g06, and consistently found optimal solutions only for problems g08 and g12.

For problems g05, g10 and g13, our algorithm significantly outperformed CHMPSO.

123

J Glob Optim (2008) 41:427–445 437

Ta
bl

e
5

C
om

pa
ri

so
n

be
tw

ee
n

SA
V

PS
O

an
d

C
H

M
PS

O
[1

3]

Pr
o

O
pt

SA
V

PS
O

B
es

t
C

H
M

PS
O

SA
V

PS
O

M
ea

n
C

H
M

PS
O

SA
V

PS
O

W
or

st
C

H
M

PS
O

g0
1

−1
5

−1
5

−1
5

−1
4.

71
51

04
−1

5
−1

2.
45

31
25

−1
5

g0
2

−0
.8

03
61

9
−0

.8
03

44
3

−0
.8

03
43

2
−0

.7
40

57
7

−0
.7

90
40

6
−0

.6
31

59
8

−0
.7

50
39

3
g0

3
−1

−1
.0

04
81

4
−1

.0
04

72
0

−1
.0

03
36

7
−1

.0
03

81
4

−0
.9

97
58

8
−1

.0
02

49
0

g0
4

−3
06

65
.5

39
−3

06
65

.5
38

67
2

−3
06

65
.5

00
−3

06
65

.5
38

67
2

−3
06

65
.5

00
−3

06
65

.5
38

67
2

−3
06

65
.5

00
g0

5
51

26
.4

98
1

51
26

.4
84

15
3

51
26

.6
40

0
52

02
.3

62
68

1
54

61
.0

81
33

3
55

20
.1

46
71

0
61

04
.7

50
00

0
g0

6
−6

96
1.

81
38

8
−6

96
1.

81
38

75
−6

96
1.

81
00

−6
96

1.
81

38
75

−6
96

1.
81

00
−6

96
1.

81
38

69
−6

96
1.

81
00

g0
7

24
.3

06
24

.3
18

98
0

24
.3

51
10

0
24

.9
88

73
1

25
.3

55
77

1
26

.1
94

27
2

27
.3

16
80

0
g0

8
−0

.0
95

82
5

−0
.0

95
82

5
−0

.0
95

82
5

−0
.0

95
82

5
−0

.0
95

82
5

−0
.0

95
82

5
−0

.0
95

82
5

g0
9

68
0.

63
0

68
0.

63
23

32
68

0.
63

80
00

68
0.

65
53

78
68

0.
85

23
93

68
0.

69
90

42
68

1.
55

30
0

g1
0

70
49

.3
30

7
70

54
.1

25
62

0
70

57
.5

90
0

71
73

.2
66

10
4

75
60

.0
47

85
7

73
35

.2
47

68
2

81
04

.3
10

00
0

g1
1

0.
75

0.
74

90
00

0.
74

99
99

0.
74

90
02

0.
75

01
07

0.
74

90
21

0.
75

28
85

g1
2

−1
−1

−1
.0

00
00

0
−1

−1
.0

00
00

0
−1

−1
.0

00
00

0
g1

3
0.

05
39

49
8

0.
05

38
66

6
0.

06
86

65
0.

55
27

53
1.

71
64

26
1.

85
61

02
13

.6
69

50

123

438 J Glob Optim (2008) 41:427–445

Table 6 Comparison of our SAVPSO with PSO [12], DEPSO [18], CPSO [4], and PESO [25] in terms of
best results

Pro Opt SAVPSO PSO DEPSO CPSO PESO

g01 −15 −15 −15 −15.000 / 15.000000

g02 −0.803619 −0.803443 / −0.7868 / −0.792608

g03 −1 −1.004814 / −1.0050 / −1.005010

g04 −30665.539 −30665.538672 −30665.5 −30665.5 −30664.7 −30665.538672

g05 5126.4981 5126.484153 – 5126.484 / 5126.484154

g06 −6961.81388 −6961.813875 −6961.7 −6961.81 / −6961.813876

g07 24.306 24.318980 24.44201 24.586 24.80818 24.306921

g08 −0.095825 −0.095825 −0.095825 −0.095825 / −0.095825

g09 680.630 680.632332 680.657 680.641 680.667 680.630057

g10 7049.3307 7054.125620 7131.01 7267.4 7114.84 7049.459452

g11 0.75 0.749000 / 0.74900 / 0.749000

g12 −1 −1 −1.000000 / / −1.000000

g13 0.0539498 0.0538666 / / / 0.081498

“/” indicates that the corresponding problem was not tested, “−” indicates that the problem was tested but no
valid results were obtained

For all the problems involving equality constraints (g03, g05, g11, and g13) in the
benchmark, our algorithm has found even better results than the optimal solutions. This is
resulted from approximating equalities by inequalities, as previously mentioned.

Table 6 summarizes the comparison of our algorithm against four other recently proposed
PSO-based algorithms in terms of best results. Of these four algorithms, Hu and Eberhart’s
PSO requires an initialization of particles inside the feasible region, which may have a very
high computational cost in some cases [12], resulting in its prohibition in real-world applica-
tions. Zhang and Xie’s DEPSO [18] is a hybrid PSO algorithm that make use of a reproduction
operator similar to that used in differential evolution [26]. The maximum number of FFE
of DEPSO in [18] is 1,400,000. PESO [25] proposed by Zavala et al. is also a hybrid PSO
algorithm which incorporates two perturbation operators, expending 350,000 FFE for each
problem in the experiment in [25]. CPSO proposed by Dong et al. [4] embeds a constraint
fitness priority-based ranking metheod and a dynamic neighborhood operator into standard
PSO algorithm, the relevant experiments with CPSO costed a maximum of 50,000 FFE.

As can be seen from Table 6, our algorithm outperforms or matches the above mentioned
PSO, DEPSO, and CPSO on the benchmark functions in terms of best results. In comparison
with PESO, our best results are better for problemsg02 andg13, slightly worse for problems
g07, g09 and g10, and comparable for other problems in the benchmark.

The experimental results above show that the combined effect of DOCHM and SAVPSO
contributes to the performance of the integrated SAVPSO, i.e., DOCHM + SAVPSO. The
developments in [19] have shown that DOCHM does contribute to the good performance
of the underlying algorithm. In order to reveal the separate contribution of SAVPSO to the
superior performance of the DOCHM + SAVPSO, we compare DOCHM + SAVPSO with
DOCHM + SPSO and DOCHM + RVPSO [19]. Here in SPSO we set c1 = c2 = 1.49445
and ω = 0.5 + rand(·)

2 , where rand(·) ∈ U [0, 1]. The comparison results are described in
Table 7. Clearly, it can be seen from Table 7 that DOCHM + SAVPSO performs much better
than DOCHM + SPSO on all the benchmark functions, this implies that SAVPSO makes a

123

J Glob Optim (2008) 41:427–445 439

Table 7 Comparison of SAVPSO with SPSO and RVPSO [19]

fun Opt DOM+ Best Median Mean Worst Std

g01 −15 SAVPSO −15 −15 −14.7151 −12.4531 7.4e−1

RVPSO −15 −15 −14.4187 −12.4531 8.5e−1

SPSO −15 −15 −14.6094 −11.8281 9.1e + 1

g02 −0.803619 SAVPSO −0.803443 −0.747502 −0.740577 −0.631598 4.2e−2

RVPSO −0.664028 −0.380820 −0.413257 −0.259980 1.2e−1

SPSO −0.803578 −0.710560 −0.700890 −0.483212 7.6e−2

g03 −1 SAVPSO −1.0048 −1.0038 −1.0034 −0.9976 1.7e−2

RVPSO −1.0050 −1.0051 −1.0025 −0.9334 1.3e−2

SPSO −1.0042 −0.9979 −0.9753 −0.7771 4.7e−2

g04 −30665.539 SAVPSO −30665.539 −30665.539 −30665.539 −30665.539 0

RVPSO −30665.539 −30665.539 −30665.539 −30665.539 0

SPSO −30665.539 −30665.539 −30665.539 −30665.539 3.3e−9

g05 5126.4981 SAVPSO 5126.4842 5126.4842 5202.3627 5520.1467 1.1e + 2

RVPSO 5126.4842 5127.0038 5241.0549 5708.2250 1.8e + 2

SPSO 5126.9691 5193.0519 5233.9116 5625.5668 1.2e + 2

g06 −6961.81388 SAVPSO −6961.81388 −6961.81388 −6961.81388 −6961.81388 0

RVPSO −6961.81388 −6961.81388 −6961.81388 −6961.81388 0

SPSO −6961.81384 −6961.81324 −6961.81269 −6961.80940 1.3e−3

g07 24.306 SAVPSO 24.319 24.887 24.989 26.194 5.5e−1

RVPSO 24.306 24.307 24.317 24.385 2.4e−2

SPSO 24.431 25.904 25.988 28.350 1.1e + 0

g08 −0.095825 SAVPSO −0.095825 −0.095825 −0.095825 −0.095825 0

RVPSO −0.095825 −0.095825 −0.095825 −0.095825 0

SPSO −0.095825 −0.095825 −0.095825 −0.095825 0

g09 680.630 SAVPSO 680.632 680.653 680.653 680.699 1.8e−2

RVPSO 680.630 680.630 680.630 680.630 0

SPSO 680.633 680.659 680.667 680.758 3.0e−2

g10 7049.3307 SAVPSO 7054.1256 7174.8991 7173.2661 7335.2477 8.4e + 2

RVPSO 7049.2480 7049.2483 7049.2701 7049.5969 7.9e−2

SPSO 7070.2635 7296.8247 7356.0522 7874.0740 1.9e + 2

g11 0.75 SAVPSO 0.749 0.749 0.749 0.749 3.9e−7

RVPSO 0.749 0.749 0.749 0.749 0

SPSO 0.749 0.749 0.749 0.749 1.5e−5

g12 −1 SAVPSO −1 −1 −1 −1 0

RVPSO −1 −1 −1 −1 0

SPSO −1 −1 −1 −1 0

g13 0.0539498 SAVPSO 0.0538666 0.461471 0.552753 1.856102 4.2e−1

RVPSO 0.0538666 0.645928 0.681123 2.042892 4.0e−1

SPSO 0.2767082 0.873415 1.021262 3.893345 7.9e−1

123

440 J Glob Optim (2008) 41:427–445

substantial contribution to the superior performance of DOCHM + SAVPSO since the two
algorithms use the same constraint-handling method DOCHM. Besides, from Table 7 we
can see that both DOCHM + SAVPSO and DOCHM + RVPSO perform sufficiently good on
all the 13 benchmarks. Both of them achieved optimal solutions on problems g04, g06,
g08, g11 and g12 in terms of best, median, mean and worst results. DOCHM + SAVPSO
performs better than DOCHM + RVPSO on almost all other problems except g07, g09 and
g10. This indicates that SAVPSO acquires additional advantages over RVPSO by getting
along the line of thinking proposed in this paper.

6 Conclusions and future work

This paper has analyzed the potential impact of constraints (or the feasible region) on the
search pattern of the particles in PSO, and then based on these investigations, we has primar-
ily investigated the methods for directly incorporating this impact into the inherent search
mechanism PSO, thereby presenting an improved PSO algorithm, i.e., SAVPSO. To deal with
constraints effectively and efficiently, we has integrated into SAVPSO our recently proposed
constraint-handling technique DOCHM. The validity of our idea and strategy are justified
via a series of experiments on a well-known benchmark suite, and the comparison results
of SAVPSO with other recently proposed PSO algorithms have shown that our integrated
SAVPSO performs better than or rather competitive with these algorithms on the bench-
mark functions. Our developments in in this work indicate that both SAVPSO and DOCHM
contribute to the superior performance of the integrated SAVPSO.

The results obtained in this paper provide us some insight into understanding and improv-
ing search mechanism of PSO from the constrained optimization perspective. Several inter-
esting directions needs to be explored in the future work. For example, we will study in
our future work the approach to more effectively incorporate the impact of constraints into
the inherent search mechanism of PSO which, at the same time, remains the advantageous
features of PSO such as simplicity, fast convergence and easy implementation. Evaluating
the performance of the improved algorithm on a wider variety of benchmark functions is also
an interesting work. In addition, a lot of work needs to be done to further improve the global
optimization ability of our algorithm.

Acknowledgements The authors are grateful to Dr. J. Kennedy for answering their questions about the
standard Particle Swarm Optimization, and to Profs. Enyu Yao, Kai Yan and Shitong Wang for their encour-
agement and helpful discussions. This research is supported by Scientific Research Fund of Jiangnan University
(No. 0003182) and National Natural Science Foundation of China (No. 10371028).

Appendix

All benchmark functions used for our experiments are summarized here for completeness.
This is the well known Michalewicz’s benchmark [10] extended by Runarsson and Yao [16].
1. g01

Minimize f (x) = 5
4∑

i=1

xi − 5
4∑

i=1

x2
i −

13∑

i=5

xi

subject to

123

J Glob Optim (2008) 41:427–445 441

g1(x) = 2x1 + 2x2 + x10 + x11 − 10 ≤ 0

g2(x) = 2x1 + 2x3 + x10 + x12 − 10 ≤ 0

g3(x) = 2x2 + 2x3 + x11 + x12 − 10 ≤ 0

g4(x) = −8x1 + x10 ≤ 0

g5(x) = −8x2 + x11 ≤ 0

g6(x) = −8x3 + x12 ≤ 0

g7(x) = −2x4 − x5 + x10 ≤ 0

g8(x) = −2x6 − x7 + x11 ≤ 0

g9(x) = −2x8 − x9 + x12 ≤ 0

where the bounds are 0 ≤ xi ≤ 1 (i = 1, . . . , 9), 0 ≤ xi ≤ 100 (i = 10, 11, 12) and
0 ≤ x13 ≤ 1. The global optimum is at x∗ = (1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1) where
f (x∗) = −15. Constraints g1, g2, g3, g4, g5 and g6 are active.
2. g02

Maximize f (x) =
∣∣∣∣∣∣

∑n
i=1 cos4(xi)− 2

∏n
i=1 cos2(xi)√∑n

i=1 i x2
i

∣∣∣∣∣∣

subject to

g1(x) = 0.75−
n∏

i=1

xi ≤ 0

g2(x) =
n∑

i=1

xi − 7.5n ≤ 0

where n = 20 and 0 ≤ xi ≤ 10(i = 1, . . . , n). The global maximum is unknown; the best
reported solution is f (x) = 0.803619. Constraint g1 is close to being active (g1 = −10−8).
3. g03

Maximize f (x) = (
√

n)n
n∏

i=1

xi

subject to

h(x) =
n∑

i=1

x2
i − 1

where n = 10 and 0 ≤ xi ≤ 1 (i = 1, . . . , n). The global maximum is at x∗ = 1/
√

n
(i = 1, . . . , n) where f (x∗) = 1.
4. g04

Minmize f (x) = 5.3578547x2
2 + 0.8356891x1x5 + 37.293239x1 − 40792.141

123

442 J Glob Optim (2008) 41:427–445

subject to

g1(x) = 85.334407+ 0.0056858x2x5 + 0.0006262x1x4 − 0.0022053x3x5 − 92 ≤ 0

g2(x) = −85.334407− 0.0056858x2x5 − 0.0006262x1x4 + 0.0022053x3x5 ≤ 0

g3(x) = 80.51249+ 0.0071317x2x5 + 0.0029955x1x2 + 0.0021813x3x2 − 110 ≤ 0

g4(x) = −80.51249− 0.0071317x2x5 − 0.0029955x1x2 − 0.0021813x2
3 + 90 ≤ 0

g5(x) = 9.300961+ 0.0047026x3x5 + 0.0012547x1x3 + 0.0010985x3x4 − 25 ≤ 0

g6(x) = −9.300961− 0.0047026x3x5 − 0.0012547x1x3 − 0.0019085x3x4 + 20 ≤ 0

where 78 ≤ x1 ≤ 102, 33 ≤ x2 ≤ 45 and 27 ≤ xi ≤ 45(i = 3, 4, 5). The optimum solution
is x∗ = (78, 33, 29.995256025682, 45, 36.775812905788) where f (x∗) = −30665.539.
Constraints g1 and g6 are active.
5. g05

Minimize f (x) = 3x1 + 0.000001x3
1 + 2x2 + (0.000002/3)x3

2

subject to

g1(x) = −x4 + x3 − 0.55 ≤ 0

g2(x) = −x3 + x4 − 0.55 ≤ 0

h3(x) = 1000 sin(−x3 − 0.25)+ 1000 sin(−x4 − 0.25)+ 894.8− x1 = 0

h4(x) = 1000 sin(x3 − 0.25)+ 1000 sin(x3 − x4 − 0.25)+ 894.8− x2 = 0

h5(x) = 1000 sin(x4 − 0.25)+ 1000 sin(x4 − x3 − 0.25)+ 1294.8 = 0

where 0 ≤ x1 ≤ 1200, 0 ≤ x2 ≤ 1200, −0.55 ≤ x3 ≤ 0.55 and −0.55 ≤ x4 ≤ 0.55.
The best known solution is x∗ = (679.9453, 1026.067, 0.1188764,−0.3962336) where
f (x∗)− 5126.4981.
6. g06

Minimize f (x) = (x1 − 10)3 + (x2 − 20)3

subject to

g1(x) = −(x1 − 5)2 − (x2 − 5)2 + 100 ≤ 0

g2(x) = (x1 − 6)2 + (x2 − 5)2 − 82.81 ≤ 0

where 13 ≤ x1 ≤ 100 and 0 ≤ x2 ≤ 100. The optimum solution is x∗ = (14.095, 0.84296)

where f (x∗) = −6961.81388. Both constraints are active.
7. g07

Minimize f (x) = x2
1 + x2

2 + x1x2 − 14x1 − 16x2 + (x3 − 10)2 + 4(x4 − 5)2 + (x5 − 3)2

+2(x6 − 1)2 + 5x2
7 + 7(x8 − 11)2 + 2(x9 − 10)2 + (x10 − 7)2 + 45

123

J Glob Optim (2008) 41:427–445 443

subject to

g1(x) = −105+ 4x1 + 5x2 − 3x7 + 9x8 ≤ 0

g2(x) = 10x1 − 8x2 − 17x7 + 2x8 ≤ 0

g3(x) = −8x1 + 2x2 + 5x9 − 2x10 − 12 ≤ 0

g4(x) = 3(x1 − 2)2 + 4(x2 − 3)2 + 2x2
3 − 7x4 − 120 ≤ 0

g5(x) = 5x2
1 + 8x2 + (x3 − 6)2 − 2x4 − 40 ≤ 0

g6(x) = x2
1 + 2(x2 − 2)2 − 2x1x2 + 14x5 − 6x6 ≤ 0

g7(x) = 0.5(x1 − 8)2 + x(x2 − 4)2 + 3x2
5 − x6 − 30 ≤ 0

g8(x) = −3x1 + 6x2 + 12(x9 − 8)2 − 7x10 ≤ 0

where −10 ≤ xi ≤ 10 (i = 1, . . . , 10). The global optimum is x∗ = (2.171996, 2.363683,
8.773926, 5.095984, 0.9906548, 1.430574, 1.321644, 9.828726, 8.280092, 8.375927) where
f (x∗) = 24.3062091. Constraints g1, g2, g3, g4, g5 and g6 are active.
8. g08

Maximize f (x) = sin3(2πx1) sin(2πx2)

x3
1(x1 + x2)

subject to

g1(x) = x2
1 − x2 + 1 ≤ 0

g2(x) = 1− x1 + (x2 − 4)2 ≤ 0

where 0 ≤ x1 ≤ 10 and 0 ≤ x2 ≤ 10. The optimum solution is located at x∗ =
(1.2279713, 4.2453733) where f (x∗) = 0.095825. The solution lies within the feasible
solution.
9. g09

Minimize f (x) = (x1 − 10)2 + 5(x2 − 12)2 + x4
3 + 3(x4 − 11)2

+10x6
5 + 7x2

6 + x4
7 − 4x6x7 − 10x6 − 8x7

subject to

g1(x) = −127+ 2x2
1 + 3x4

2 + x3 + 4x2
4 + 5x5 ≤ 0

g2(x) = −282+ 7x1 + 3x2 + 10x2
3 + x4 − x5 ≤ 0

g3(x) = −196+ 23x1 + x2
2 + 6x2

6 − 8x7 ≤ 0

g4(x) = 4x2
1 + x2

2 − 3x1x2 + 2x2
3 + 5x6 − 11x7 ≤ 0

where −10 ≤ xi ≤ 10 for i = 1, . . . , 7. The global optimum is x∗ = (2.330499, 1.951372,
−0.4775414, 4.365726, −0.6244870, 1.038131, 1.594227) where (x∗) = 680.6300573.
Constraints g1 and g4 are active.
10. g10

Minimize f (x) = x1 + x2 + x3

123

444 J Glob Optim (2008) 41:427–445

subject to

g1(x) = −1+ 0.0025(x4 + x6) ≤ 0

g2(x) = −1+ 0.0025(x5 + x7 − x4) ≤ 0

g3(x) = −1+ 0.01(x8 − x5) ≤ 0

g4(x) = −x1x6 + 833.33252x4 + 100x1 − 83333.333 ≤ 0

g5(x) = −x2x7 + 1250x5 + x2x4 − 1250x4 ≤ 0

g6(x) = −x3x8 + 1250000+ x3x5 − 2500x5 ≤ 0

where 100 ≤ x1 ≤ 10000, 1000 ≤ xi ≤ 10000 (i = 2, 3), and 10 ≤ xi ≤ 1000 (i =
4, . . . , 8). The global optimum is x∗ = (579.3167, 1359.943, 5110.071, 182.0174, 295.5985,
217.9799, 286.4162, 395.5979) where f (x∗) = 7049.3307. There constraints are active
(g1, g2, and g3).
11. g11

Minimize f (x) = x2
1 + (x2 − 1)2

subject to

h(x) = x2 − x2
1 = 0

where−1 ≤ x1 ≤ 1 and−1 ≤ x2 ≤ 1. The optimum solution is x∗ = (±1/
√

2, 1/2) where
f (x∗) = 0.75.
12. g12

Maximize f (x) = (100− (x1 − 5)2 − (x2 − 5)2 − (x3 − 5)2)/100

subject to

g(x) = (x1 − p)2 + (x2 − q)2 + (x3 − r)2 − 0.0625 ≤ 0

where 1 ≤ xi ≤ 10 (i = 1, 2, 3) and p, q, r = 1, 2, . . . , 9. The feasible region of the search
space consists of 93 disjointed spheres. A point (x1, x2, x3) is feasible if and only if there
exist p, q, r such that the above inequality holds. The optimum is located at x∗ = (5, 5, 5)

where f (x∗) = 1. The solution lies within the feasible region.
13. g13

Minimize f (x) = ex1x2x3x4x5

h1(x) = x2
1 + x2

2 + x2
3 + x2

4 + x2
5 − 10 = 0

h2(x) = x2x3 − 5x4x5 = 0

h3(x) = x3
1 + x3

2 + 1 = 0

where −2.3 ≤ xi ≤ 2.3 (i = 1, 2) and −3.2 ≤ xi ≤ 3.2(i = 3, 4, 5). The optimum solu-
tion is x∗ = (−1.717143, 1.595709, 1.827247,−0.7636413,−0.763645) where f (x∗) =
0.0539498.

References

1. Floudas, C.A., Pardalos, P.M.: A collection of test problems for constrained global optimization algo-
rithms. Lect. Notes Comput. Sci. 455, Springer-Verlag (1987)

2. Himmelblau, D.M.: Applied Nonlinear Programming. McGraw-Hill (1972)

123

J Glob Optim (2008) 41:427–445 445

3. Coello Coello, C.A.: Theoretical and numerical constraint-handling techniques used with evolutionary
algorithms: A survey of the state of the art. Comput. Meth. Appl. Mech. Eng. 191, 1245–1287 (2002)

4. Dong, Y., Tang, J.-F., Xu, B.-D., Wang, D.-W.: An application of swarm optimization to nonlinear
programming. Comput. Math. Appl. 49, 1655–1668 (2005)

5. Hu, X., Eberhart, R.C., Shi, Y.: Engineering optimization with particle swarm. In: Proceedings of 2003
IEEE Swarm Intelligence Symposium, pp. 53–57 (2003)

6. Parsopoulos, K.E., Vrahatis, M.N.: Unified particle swarm optimization for solving constrained engi-
neering optimization problems. Lect. Notes Comput. Sci. 3612, 582–591 (2005)

7. Yeniay, Ö.: Penalty function methods for constrained optimization with genetic algorithms. Math. Com-
put. Appl. 10, 45–56 (2005)

8. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of IEEE International Con-
ference on Neural Networks, Perth, Australia, pp. 1942–1948 (1995)

9. Eberhart, R.C., Kennedy, J.: A new Optimizer using particle swarm theory. In: Proceedings of 6th
International Symposium on Micro Machine and Human Science, Nagoya, Japan, pp. 39–43 (1995)

10. Michalewicz, Z., Schoenauer, M.: Evolutionary algorithms for constrained parameter optimization prob-
lems. Evol. Comput. 4, 1–32 (1996)

11. Coello Coello, C.A.: Treating constraints as objectives for single objective evolutionary computations.
Eng. Optim. 32, 275–308 (2000)

12. Hu, X., Eberhart, R.C.: Solving constrained nonlinear optimization problems with particle swarm opti-
mization. In: Proceedings of 6th World Multiconference on Systemics, Cybernetics and Informatics (SCI
2002), Orlando, USA (2002)

13. Toscano, G., Coello Coello, C.A.: A constraint-handling mechanism for particle swarm optimization.
In: Proceedings of the 2004 Congress on Evolutionary Computation, June, IEEE, pp. 1396–1403 (2004)

14. Sedlaczek, K., Eberhart, P.: Constrained particle swarm optimization of mechanical systems. In: Pro-
ceedings of Sixth World Congresses of Structural and Multidisciplinary Optimization. Rio de Janeiro,
Brizil (2005)

15. Parsopoulos, K.E., Vrahatis, M.N.: Particle swarm optimization method for constrained optimization
problems. In: Proceedings of the Euro-International Symposium on Computational Intelligence (E-ISCI
2002) (2002)

16. Runarsson, T.P., Yao, X.: Stochastic ranking for constrained evolutionary optimization. IEEE Trans.
Evol. Comput. 4, 284–294 (2000)

17. Koziel, S., Michalewicz, Z.: Evolutionary algorithms, homomorphous mappings, and constrained param-
eter optimization. Evol. Comput. 7, 19–44 (1999)

18. Zhang, W.-J., Xie, X.-F.: DEPSO: hybrid particle swarm with differential evolution operator. In: Proceed-
ings of IEEE International Conference on Systems, Man and Cybernetics, October, IEEE, pp. 3816–3821
(2003)

19. Lu, H.Y., Chen, W.Q.: Dynamic-objective particle swarm optimization for constrained optimization
problems. J. Comb. Optim. 12, 409–419 (2006)

20. Kennedy, J.: Dynamic-probabilistic particle swarms. GECCO’05, June 2005, Washington, DC, USA,
pp. 201–207 (2005)

21. Eberhart, R.C., Shi, Y.: Comparison between genetic algorithms and particle swarm optimization. In:
Porto, V.W., Saravanan, N., Waagen, D., Eiben, A.E. (eds.) Evolutionary Programming, Vol. 7, pp.
611–616. Springer-Verlag, Berlin (1998)

22. Shi, Y., Eberhart, R.C. : Parameter selection in particle swarm optimization. In: Porto, V.W., Saravanan,
N., Waagen, D., Eiben, A.E. (eds.) Evolutionary Programming, vol. 7, pp. 591–600. Springer-Verlag, Ber-
lin (1998)

23. Shi, Y., Eberhart, R.C.: A modified particle swarm optimizer. In: Proceeding of IEEE Conference on
Evolutionary Computation, Anchorage, AK, pp. 69–73 (1998)

24. Shi, Y.: Particle swarm optimization. IEEE Neural Networks Society, February, pp. 8–13 (2004)
25. Muñoz Zavala, A.E., Hernández Aguirre, A., Villa Diharce, E.R.: Constrained optimization via particle

evolutionary swarm optimization algorithm (PESO), GECCO’05, Washington, DC, USA, 25–27 June,
pp. 209–216 (2005)

26. Storn, R., Price, K.: Differential evolution—a simple andd efficient heuristic for global optimization
over continuous spaces. J. Global Optim. 11, 341–359 (1997)

123

	Self-adaptive velocity particle swarm optimization for solving constrained optimization problems
	Abstract
	Introduction
	Problem statement
	PSO and its inapplicability to COPs
	Our approach
	Impact of constraints on the search mechanism of PSO
	Self-adaptive velocity particle swarm optimization
	Parameter analysis
	Constraint-handling method
	The integrated SAVPSO for solving COPs
	Experiments and discussions
	Conclusions and future work
	Acknowledgements

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

